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Abstract

In all forms of reasoning that do not proceed by strict logical in-
duction, some kind of statistical algorithm must be employed. One of
the major types of such reasoning is ‘supervised learning’, in which one
is provided a training set of input-output pairs, and must guess what
the entire input-output function is. Outside of conventional sampling
theory statistics, there are two primary mathematical approaches to
supervised learning: Bayesian Learning Theory and Computational
Learning Theory. This article examines the foundations of those two
mathematical approaches, especially in light of the ‘no-free-lunch’ the-
orems that limit what a priori formal assurances one can have con-
cerning a learning algorithm without making assumptions concerning
the real world.



1 How well can we learn: The mathe-
matics of inductive learning

Inductive learning is the process of coming to statistical conclusions
based on past experiences. As compared to deduction, with induction
one is never perfectly sure of one’s conclusion, instead arriving at a
(hopefully highly probable) guess. Inductive learning is performed by
the human brain continually; almost all of a brain’s conclusions, from
the “simplest” ones involved in sensor-motor decisions, to the most
“sophisticated” existential ones concerning how one should live one’s
life, are based at least in part on inductive learning. Even science,
arguably the acme of human thought, is ultimately inductive in nature,
with the “past experiences” its conclusions are based on being previous
experimental data, and with its “conclusions” being theories that are
always open to revision.

A lot of work has been directed at implementing inductive learn-
ing algorithmically, in computers. “Adaptive computation”, involv-
ing neural networks, fuzzy logic, and computational statistics, can be
viewed as a set of attempts to do this. The topic of algorithmic in-
duction also looms large in other fields like artificial intelligence and
genetic algorithms. Recently this work has fostered renewed research
on the mathematical underpinnings of inductive learning. A thorough
understanding of that mathematics would not only result in improve-
ments in our applied computational learning systems. It would also
provide us insight into the entire scientific method, as well as human
cognition. A more profound line of research cannot be imagined.

This chapter surveys “Bayesian learning theory” and “computa-
tional learning theory”. These are the two primary mathematical ap-
proaches that have been applied to supervised learning, a particularly
important branch of inductive learning. For reasons of space, the form
of supervised learning considered in this chapter is extremely simpli-
fied, designed to highlight the distinctions between these two learning
theories rather than present either approach in its full form.

The only mathematical framework that can encapsulate both learn-
ing theories is the over-arching “Extended Bayesian Framework” (Wolpert,
1997). For current (simplified) purposes, it can be synopsized as fol-
lows. Say we have a finite input space X and a finite output space
Y, and a set of m input-output pairs, d = {dx(i),dy(¢)}. Refer to



d as a training set, and presume it was created by repeated noise-
free sampling of an X — Y target function, f. More formally,
assume that the likelihood governing the generation of d from f is
Pd| f) =II% m(dx(¢))é(dy (i), f(dx(3))), where §(.,.) is the Kro-
necker delta function that equals 1 if its arguments are equal, 0 other-
wise, and 7 is known as the sampling distribution. P(f) is known
as the prior distribution over targets, and P(f | d) is known as the
posterior.

Let h be the X — Y function our learning algorithm produces in
response to d. So as far as learning accuracy is concerned, that learning
algorithm is specified in toto by P(h | d). Since our learning algorithm
only sees d, not f (although it might make assumptions concerning f),
P(h|d,f) = P(h|d). Note that P(h) =32, s P(h | d)P(d | f)P(f),
and in general need not equal the prior P(f) evaluated for f = h.

Take s to be the number of dx (i) such that dy (i) = h(dx(¢)),
i.e., the learning algorithm’s average accuracy on the training set. Fi-
nally, let C' be the average (according to w) across all x € X lying
outside of the training set of whether h and f agree on z. Call C the
off-training set error. It is the measure of how well our learning
algorithm generalizes from the training set. An alternative error func-
tion, indicted by ¢, isthe “IID” error function. It is the same average,
just not restricted to x € dx, so that a learning algorithm gets some
credit simply for memorizing what it’s already seen.

Extensions of these definitions to allow for other kinds of error
functions, noise in the target, uncertain sampling distributions, differ-
ent likelihoods, infinite input and output spaces, etc., are all straight-
forward though laborious. See (Wolpert, 1997). The next section
presents some contextual theorems for our comparison of the Bayesian
and computational learning “theories” of supervised learning. In the
following two section those two theories are presented.

2 No free lunch: a formalization of in-
ductive bias

We start with the following theorem (Wolpert, 1995), which says what
our expected generalization error is after training on some particular
training set:



Theorem 1 The conditional expectation value E(C | d) can be

written as a (non-Euclidean) inner product between the distributions
P(h|d) and P(f | d): E(C|d) =3, Er(h, f,d)P(h | d)P(f | d).

(Similar results hold for E(C' | m), etc.)

Theorem 1 says that how well a learning algorithm P(h | d) per-
forms is determined by how “aligned” it is with the actual posterior,
P(f | d). This theorem allows one to ask questions like “for what
set of posteriors is algorithm G better than algorithm G2?” It also
means that, unless one can somehow prove (!), from first principles,
that P(f | d) has a certain form, one cannot prove that a particular
P(h | d) will be aligned with P(f | d) and, therefore, one cannot prove
anything concerning how well that learning algorithm generalizes.

There are a number of way to formalize this impossibility of es-
tablishing the superiority of some particular learning algorithm with
a proof that is first-principles and assumption-free, and in particular
is not implicitly predicated on a particular posterior. One of them is
in the following set of no-free-lunch theorems (Wolpert, 1996):

Theorem 2: Let “E;(.)” indicate an expectation value evaluated
using learning algorithm ¢. Then for any two learning algorithms
Py(h | d) and P3(h | d), independent of the sampling distribution,

i) Uniformly averaged over all f, E1(C' | f,m) — Es(C | f,m) = 0;

ii) Uniformly averaged over all f, E;(C | f,d) — E2(C' | f,d) =0,

for any training set d;
iii) Uniformly averaged over all P(f), E1(C | m) — E2(C | m) = 0;
iv) Uniformly averaged over all P(f), E;(C | d) — E2(C | d) =0,
for any training set d.

According to these results, by any of the measures E(C' | d), E(C |
m), E(C | f,d), or E(C | f,m), all algorithms are equivalent, on
average. The uniform averaging that goes into these results should be
viewed as a calculational tool for comparing algorithms, rather than
as an assumption concerning the real world. In particular, the proper
way to interpret 2.i is that, appropriately weighted, there are “just as
many” targets for which algorithm 1 has better E(C | f,m) as there
are for which the reverse is true. Accordingly, unless one can establish
a priori, before seeing any of the data d, that the f that generated d is
one of the ones for which one’s favorite algorithm performs better than



other algorithms, one has no assurances that that algorithm performs
any better than the algorithm of purely random guessing.

This does not mean that one’s algorithm must perform the same
as random guessing in the real world. Rather it means that, formally,
one cannot establish superiority to random guessing without making
some assumptions. Note in particular that you cannot use your prior
experience — or even the billion years or so of “prior experiences” of
your genome, reflected in the design of your brain — to circumvent this
problem, since all that prior experience is, formally, just an extension
to the training set d.

As an important example of the foregoing, consider assessing the
validity of a hypothesis by using experimental data that was not avail-
able when the hypothesis was created. In the form of “falsifiability”
this concept is one of the primary tools commonly employed in the
scientific method. It can be viewed as a crude version of a procedure
that is common in applied supervised learning: Choose between the
two hypothesis functions h4 and hp, made by running two general-
izers A and B on a training set dy, by examing their accuracies on a
distinct “held-out” training set do that was generated from the same
target that generated d;.

Such a procedure for choosing between hypotheses seems almost
unimpeachable. Certainly its crude implementation in the scientific
method has resulted in astonishing success. Yet it cannot be justified
without making assumptions about the real world. To state this more
formally, take any two learning algorithms A and B, and consider
two new algorithms based on them, S and 7. S uses an extension
of the choosing procedure outlined above, know as cross-validation:
given a training set d, S breaks d into two disjoint portions, d; and
do; trains A and B on d; alone; sees which resultant hypothesis is
more accurate on dp; and then trains the associated learning algorithm
on all of d and uses the associated hypothesis. In contrast, 7" uses
anti-cross-validation: It is identical to S except that it chooses the
learning algorithm whose associated hypothesis’ accuracy on ds was
worst. However by the no-free-lunch theorems, we know that T' must
outperform S as readily as vice-versa, regardless of A and B. Tt is
only when a certain (subtle) relationship holds between P(f) and the
A and B one is considering that S can be preferable to T' (cf. Theorem
1). When that relationship does not hold, T will outperform S.

This result means in particular that the scientific method must



fail as readily as it succeeds, absent some a priori relation between
the learning algorithms it uses (i.e., scientists) and the actual truth.
Unfortunately though, next to nothing is known formally about that
required relation. In this, the whole of science —not to mention human
cognition— is based on a procedure whose assumptions not only are
formally unjustified, but also have not even been formally stated.

3 Bayesian learning theory

Intuitively, the Bayesian approach to supervised learning can be viewed
as an attempt to circumvent the no-free-lunch theorems by explicitly
making an assumption for the posterior. Usually, to do this it first
restricts attention to situations in which the likelihood is known (in
the context of this chapter, that means it presumes that one knows
there is no noise). It then makes an assumption the prior, P(f). Next
Bayes’ theorem is invoked to combine the prior with the likelihood to
give us our desired posterior: P(f | d) o< P(d| f)P(f), where the pro-
portionality constant is independent of f. (Besides those concerning
the prior, there are other kinds of assumptions which, when combined
with the likelihood, fix the posterior (Wolpert, 1993). However such
assumptions have not yet been investigated in any detail.)

Given such a posterior, one has uniquely specified the value of
E(C | d) that accompanies any particular learning algorithm P(h | d)
(cf. Theorem 1). In particular, one can solve for the P(h | d) that
minimizes E(C | d), known as the Bayes-optimal learning algorithm.
This algorithm is given by the following theorem, which is actually a
bit more general than we need:

Theorem 3: Let C(f,h,d) = > ,cx 7' (2)G[h(z), f(z)] for some real-
valued function G(.,.) and some real-valued 7'(.) that is nowhere-
negative and either may or may not equal the distribution 7(.) arising
in P(d | f). Then the Bayes-optimal P(h | d) always guesses the same
function h* for the same d:

h* = {z € X — arg minycy Q(z,y)}, where

Qz,y) = 25 G(f(2),9)P(f | d).

(There are no restrictions on whether the function #/(.) may vary with
d, as it does in OTS error.)



Intuitively, Theorem 3 says that for any x, one should choose the
y € Y that minimizes the average distance from y to f(x), where
the average is over all f(.), according to the distribution P(f | d), and
“distance” is measured by G(.,.). Note that this result holds regardless
of the form of P(f), and regardless of what (if any) noise process is
present; all such considerations are taken care of automatically, in the
P(f | d) term. Note also that h* might be an f with zero-valued
posterior; in the Bayesian framework, h does not really constitute a
“guess for the f which generated the data.”

This is all there is to the Bayesian framework, as far as founda-
tional issues are concerned (Berger, 1985), (Loredo, 1990), (Buntine
and Weigend, 1991), (Wolpert, 1995). Everything else one reads con-
cerning the framework involves either philosophical or calculational
issues. The philosophical issues usually revolve around what P(f)
“means” (Wolpert, 1993). In particular, some hard-core Bayesians do
not view the P(f) they use to derive their learning algorithm as an
assumption for the actual P(f), one which may or not correspond to
reality. Rather in general they interpret the probability of an event as
one’s “personal degree of belief” in that event, and therefore in par-
ticular interpret P(f) that way. According to this view, probability
theory is simply a calculus for forcing consistency in one’s use of prob-
ability to manipulate one’s subjective beliefs. Accordingly, no matter
how absurd an Bayesian’s prior, under this interpretation practition-
ers of non-Bayesian approaches to supervised learning are by definition
always going to perform worse than that Bayesian (since the Bayesian
“fixes” P(f) and therefore P(f | d) and guesses accordingly in an
optimal manner — cf. Theorem 1).

Some of the calculational issues in the Bayesian framework involve
calculating P(f | d). However even when one knows P(f | d), it is
still often extremely difficult to evaluate the associated Bayes-optimal
algorithm. Accordingly, people often settle for approximations to the
Bayes-optimal algorithm, and /or incorporate into their algorithm es-
timates whose justification is intuitive rather than mathematical. See
the discussion of empirical Bayes and ML-II in Section 9 of (Wolpert,
1995).



4 Computational learning theory

The Computational Learning Framework takes a number of forms,
the primary ones being the statistical physics, PAC and VC (uni-
form convergence) approaches (Baum and Haussler, 1989), (Vapnik,
1982), (Wolpert, 1995). All three can be cast as bounds concerning
a probability distribution that involves IID error, and that is condi-
tioned on f (in contrast to the Bayesian framework, in which f is not
fixed). In addition, in their most common forms they all have m rather
than d fixed in their distribution of interest (again, in contrast to the
Bayesian framework). This last point means that they do not address
the question of what the likely outcome is for the training set at hand.
Rather, they address the question of what the outcome likely would
be if one had different training sets than the actual d. Such vary-
ing of quantities that are in fact fixed and known has been criticized
by Bayesian practitioners on formal grounds, as violating any possi-
ble self-consistent principles for induction. (See (Wolpert, 1993) and
the discussion of the “Honesty Principles” in (Wolpert, 1995) for an
overview of the conflict between the two learning theories).

As a pedagogical example, this section focuses on (a pared-down
version of) the VC framework. Start with the following simple result,
which concerns the confidence interval relating ¢ and s, for the case
where H , the h-space support of a learning algorithm’s P(h), consists
of a single h (Wolpert, 1995):

Theorem 4: Assume that there is an h' such that P(h | d) = 6(h—h')
for all d. Then ,
Plc>s+e| f,m)<2e ™.

(Recall that s is the empirical misclassification rate.) Note that this
bound is independent of f, and therefore of the prior P(f).

If H instead consists of more than one h, the bound in Theorem 4
still applies if one multiplies the right-hand-side by |H |, the number of
functions in H . The major insight behind the uniform convergence
framework was how how to derive tighter bounds still by characterizing
P(h | d) in terms of its VC dimension (Baum and Haussler, 1989),
(Vapnik, 1982), (Wolpert, 1995). (Care should be taken to distinguish
between this use of the VC dimension and its use in other contexts,
as a characterization of P(f).) For Y = {0,1} and our error function,



the VC dimension is given by the smallest m such that for any dx of
size m, all of whose elements are distinct, there is a dy for which no
hin H goes through d. (The VC dimension is this smallest number
minus one.)

Common to all such extensions of Theorem 4 is a rough equiva-
lence (as far as the likely values of ¢ are concerned) between (i) low-
ering s; (ii) lowering the expressive power of P(h | d) (i.e., shrinking
its VC dimension, or shrinking |H |); and (iii) raising m. Important
as these extensions of Theorem 4 are though, to understand the foun-
dational issues underpinning the uniform convergence framework, it
makes sense to restrict attention to the scenario in which there is a
single h in H .

In general, Since you can measure s and want to know c (rather
than the other way around), a bound on something like P(c > k |
s,m), perhaps with k& = s + ¢, would provide us some useful infor-
mation concerning generalization error. With such a bound, we could
say that since we observe m and s to be such-and-such, with high
probability ¢ is lower than function(such-and-such). However since
both f and (for our learning algorithm) h are fixed in the probability
distribution in Theorem 4, c is also fixed there, for IID error. (This
differs from the Bayesian framework, which has ¢’s value is only prob-
abilistically determined.) In fact, in Theorem 4 what is varying is dx
(or more generally, when there is noise, d). So Theorem 4 does not
directly give us the probability that ¢ lies in a certain region, given the
training set at hand. Rather it gives the probability of a dx (generated
via experiments other than ours) such that the difference between the
fixed ¢ and (the function of dx) s lie in a certain region.

It might seem that Theorem 4 can be modified to provide us a
bound of the type we seek though. After all, Theorem 4 can be written
as a bound on the “inverse” of P(c > k | s,m), P(s < k| ¢,m), where
k = ¢ —e. How does P(s | ¢,m) relate to what we wish to know,
P(c | s,m)? The answer is given by Bayes’ theorem: P(c | s,m) =
P(s|e,m) P(c|m) /[ P(s|m).

Unfortunately, this result has the usual problem associated with
Bayesian results; it is prior-dependent. Does it somehow turn out that
that prior has little effect? Alas, no; depending on P(c), P(c > s+¢ |
s,m) can differ markedly from the bound on P(s < ¢ —¢ | m,a,c)
given in Theorem 4. Even if given a truth c, the probability of an s
that differs substantially from the truth is small, it does not follow



that given an s, the probability of a truth that differs substantially
from that s is small.

To illustrate this point, say we have two random variables, A and
B, which can both take on the values “low” and “high”. Say that
the joint probability distribution is P(A = high, B = high) = 100,
P(A = high, B =low) =2, P(A = low, B = low) = 1, and P(4A =
low, B = low) = 1. Then the probability that A and B differ is quite
small (3/114); we have a tight confidence interval relating them, just
as in Theorem 4. Nonetheless, P(A = high | B = low) is 2/3; despite
the tight confidence interval, if we observe B = low, we cannot infer
that A is as well. Replace “A” with “c”, and “B” with “s”, and we
see that results like Theorem 4’s do not imply that having observed a
low s, one can conclude that one has a low c.

A more concrete example of this effect in the context of supervised
learning is the following result, established in (Wolpert, 1995):

Theorem 5: Let 7(z) be flat over all z and P(f) flat over all f. For
IID error, the noise-free IID likelihood considered in this paper, and
the learning algorithm of Theorem 4,

Plc]s,m) = [(j) ¢™ Q=)™ x [(z) (r=1)".

m
sm nce

Theorem 5 can be viewed as a sort of compromise between the
likelihood-driven “something for nothing” results of the VC frame-
work, and the no-free-lunch theorems. The first term in the product
has no c-dependence. The second and third terms together reach a
peak when ¢ = s; they “push” the true misclassification rate towards
the empirical misclassification rate, and would disappear if we were
using off-training-set error. These two terms are closely related to the
likelihood-driven VC bounds. However, the last two terms, taken to-
gether, form a function of ¢ whose mean is 1/r. They reflect the fact
that all f’s are being allowed with equal prior probability, and are
closely related to the no-free-lunch theorems (despite the fact that iid
error is being used). In this sense, our result for P(c | s,m) is nothing
other than a product of a no-free-lunch term with a VC-type term.

In response to such formal admonitions, one is tempted to make
the following intuitive reply: “Consider the sequence where: a sample
point is drawn from f; some pre-fixed hypothesis A’ that has no a
priori bias relative to f correctly predicts that point; another sample
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point is drawn; h' correctly predicts that point as well, etc. Based on
a set of such points, you guess that h’' will correctly predict the next
sample point. And lo and behold, it does (s is small). In other words,
the generalizer {always guess h'} has excellent cross-validation error.
In this situation, wouldn’t you believe that it is unlikely for A’ and
f to disagree on future sample points, regardless of the no-free-lunch
theorems?

To disentangle the implicit assumptions behind this argument, con-
sider it again in the the case where h’' is some extremely complex
function that was formed by a random process. Now the claim in the
intuitive argument is that h’ was fixed independent of any determina-
tion of f, d, or anything else, and is not biased in any way towards
f- Then, so goes the claim, f was sampled to generate d, and it just
so happened that f and h' agree on d. According to the intuitive
argument presented above, we should conclude in such a case that h’
and f would agree on points not yet sampled. Yet in such a situation
our first suspicion might instead be that the claims that were made
are wrong, that cheating has taken place and that b’ is actually based
on prior knowledge concerning f. After all, how else could the “essen-
tially random” h' agree with f—h' was supposedly fixed without any
information concerning d, and therefore without any coupling to f.

If, however, we are assured that no cheating is going on, then
“intuition” might very well just shrug its shoulders and say that the
agreements between f and h must be simple coincidence. They have
to be since, by hypothesis, there is nothing that could possibly connect
h and f. So intuition need not proclaim that the agreements on the
data set mean that f and b’ will agree on future samples. Moreover,
if cheating did occur, then to formulate the problem correctly, then
we have to know about the a priori connection between f and h
in order to properly analyze the situation. This results in a different
(prior-dependent) distribution that the one investigated in the uniform
convergence framework.
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6 Glossary

Algorithm: An unambiguous step-by-step procedure, especially one
that is carried out on a computer.

Bayes’ Theorem: The definition that for any two events A and B,
the conditional probability P(A | B) = P(A, B)/P(B), and therefore

_ _P(AB)P(B)
PIBIA) = 5 bampmy

Deductive Reasoning: The process of coming to a unique conclusion
about the state of the world by logically deriving that conclusion from
provided information. Compare to inductive reasoning.

Ezpectation Value: The expectation value of a numerical random vari-
able A is its average according to the associated probability distribu-
tion, Y. 4 AP(A).
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IID: Independent, Identically Distributed. The process of generating
data by repeatedly sampling the same underlying probability distri-
bution, where each sample is generated independently of the others.

Inductive Reasoning: An algorithm for making a guess as to the state
of the world based on information that is insufficient to logically fix
that state. Compare to deductive reasoning.

Learning Algorithm: An algorithm for making a probabilistic guess for
some quantity based on data concerning that quantity, especially such
an algorithm for performing supervised learning. Examples include
neural networks, fuzzy logic, and statistical regression.

Scientific Method: The process by which the scientific community
comes to agreement concerning the legitimacy of a particular theory,
especially how data related to that theory is used to this end.

Supervised Learning: The general problem of how to infer an entire
input-output function given only a finite data set formed by sampling

that function.

Training Set: A set of input-output pairs formed by sampling an input-
output function.
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